loading...
Though this article on wikipedia
:
https://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
Particle is a abtract term, not a physical thing. Itβs a techqiue to compute the distribution of matters.
{\displaystyle \rho _{i}=\rho ({\boldsymbol {r}}_{i})=\sum _{j}m_{j}W_{ij},}
Today, I want to explore the comparison between cubic and quintic splines for trajectory generation: Cubic splines are great for basic tasks where smooth motion is not a requirement. Quintic splines are good for applications that require more precise and smooth control.
https://pysph.readthedocs.io/en/latest/reference/kernels.html#pysph.base.kernels.QuinticSpline
Firstly:
q = r/h
for $q \in [0, 1]$:
W(q)=\sigma_5[(3-q)^5 - 6(2-q)^5 + 15(1-q)^5]
for $q \in (1, 2]$:
W(q)=\sigma_5[(3-q)^5 - 6(2-q)^5]
for $q \in (2, 3]$:
W(q)=\sigma_5(3-q)^5
for $q \in (3, \infty]$:
W(q)=0
where $\sigma_5$ is a dimensional normalizing factor for the quintic spline function given by:
\sigma_5 = {1\over 120 \pi h^3}
I got to known how to calculate the pressure at a particle position!
p_i = c^2(\rho_i - \rho_{0})
where:
c = 10v_{max}
the max of velocity of particle has to be estimated!
{dv_i \over dt} = - {\sum_j}m_j{({p_i\over\rho_i^2}+ {p_j\over\rho_j^2})}\nabla{W_{ij}} + g
and,
a_i = {dv_i \over dt}
for $q \ge 3$: $\nabla{Wij}=0$
else for $q \ge 2$
we use Artificial viscosity
while $v_{ij} * {r_{ij}} \ge 0$:
\Pi_{ij} = 0
else:
\Pi_{ij} = {\displaystyle {-\alpha \bar c_{ij}\phi_{ij} + \beta\phi_{ij}^2} \over {\bar \rho_{ij}}}
where:
\phi_{ij} = {\displaystyle h \mathbf v_{ij} \cdot \mathbf r_{ij} \over { \Vert \mathbf r_{ij} \Vert ^2 + \eta_h^2 } }
commit 9f2d0ee20c21f42ae322a1053821d3b5865b7be6 Author: singhi <zhangxinghai79@gmail.com> Date: Mon Mar 31 23:54:48 2025 +0800 hei